Reflectance and transmittance model for recto-verso halftone prints.

نویسندگان

  • Mathieu Hébert
  • Roger David Hersch
چکیده

We propose a spectral prediction model for predicting the reflectance and transmittance of recto-verso halftone prints. A recto-verso halftone print is modeled as a diffusing substrate surrounded by two inked interfaces in contact with air (or with another medium). The interaction of light with the print comprises three components: (a) the attenuation of the incident light penetrating the print across the inked interface, (b) the internal reflectance and internal transmittance that accounts for the substrate's intrinsic reflectance and transmittance and for the multiple Fresnel internal reflections at the inked interfaces, and (c) the attenuation of light exiting the print across the inked interfaces. Both the classical Williams-Clapper and Clapper-Yule spectral prediction models are special cases of the proposed recto-verso reflectance and transmittance model. We also extend the Kubelka-Munk model to predict the reflectance and transmittance of recto-verso halftone prints. The extended Kubelka-Munk model is compatible with the proposed recto-verso reflectance and transmittance model. In the case of a homogeneous substrate, the recto-verso model's internal reflectance and transmittance can be expressed as a function Kubelka-Munk's scattering and absorption parameters, or the Kubelka-Munk's scattering and absorption parameters can be inferred from the recto-verso model's internal reflectance and transmittance, deduced from spectral measurements. The proposed model offers new perspectives both for spectral transmission and reflection predictions and for characterizing the properties of printed diffuse substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yule-Nielsen based recto-verso color halftone transmittance prediction model.

The transmittance spectrum of halftone prints on paper is predicted thanks to a model inspired by the Yule-Nielsen modified spectral Neugebauer model used for reflectance predictions. This model is well adapted for strongly scattering printing supports and applicable to recto-verso prints. Model parameters are obtained by a few transmittance measurements of calibration patches printed on one si...

متن کامل

Reflectance and transmittance model for recto-verso halftone prints: spectral predictions with multi-ink halftones.

We extend a previously proposed spectral reflectance and transmittance prediction model for recto-verso prints to the case of multi-ink halftones. The model takes into account the multiple reflections and the lateral propagation of light within the paper substrate (optical dot gain) as well as the spreading of the inks according to their superposition conditions (mechanical dot gain). The model...

متن کامل

Yule-Nielsen approach for predicting the spectral transmittance of halftone prints

The transmittance spectrum of halftone prints on paper is predicted thanks to a model inspired by the Yule-Nielsen modified spectral Neugebauer model used for reflectance predictions. This model is well adapted for semi-opaque printing supports and applicable to duplex prints. Model parameters are obtained by a few transmittance measurements on calibration patches printed at one side of the pap...

متن کامل

Two-flux transfer matrix model for predicting the reflectance and transmittance of duplex halftone prints.

We introduce a model allowing convenient calculation of the spectral reflectance and transmittance of duplex prints. It is based on flux transfer matrices and enables retrieving classical Kubelka-Munk formulas, as well as extended formulas for nonsymmetric layers. By making different assumptions on the flux transfers, we obtain two predictive models for the duplex halftone prints: the "duplex C...

متن کامل

Analyzing halftone dot blurring by extended spectral prediction models.

Spectral prediction models for halftone prints generally assume homogeneously thick and sharply edged ink dots, i.e., bilevel halftones. In real prints, the ink thickness often decreases at the boundaries of the ink dots, thereby forming continuous-level halftones. The present study aims at verifying to what extent the classical Clapper-Yule and Yule-Nielsen models are able to predict the refle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 23 10  شماره 

صفحات  -

تاریخ انتشار 2006